Mass dependent fractionation in pyrite from the Golden Mile: Evidence for a mantle connection during gold mineralization

Marcelo Godefroy Rodriguez*, Steffen Hagemann, Crystal LaFlamme, and Marco Fiorentini

University of Western Australia, Perth, Western Australia, Australia, *e-mail, 21399148@student.uwa.edu.au

The Archean Golden Mile deposit in the Kalgoorlie Terrane of Western Australia displays three distinct mineralization styles that overprint the regional chlorite-carbonate-epidote metamorphic facies: 1) Fimiston style is comprised of brittle-ductile interconnected shear zones associated with ankerite-pyrite-gold-telluride±hematite±magnetite in the proximal alteration zone and by chlorite-carbonate in the distal alteration zone, 2) Oroya style consists of breccia pipe bodies with ankerite-sericite-roescolite-pyrite-gold-telluride±pyrrhotite in the proximal and chlorite-epidote-rutile-ilmenite alteration in the distal alteration zone, and 3) Mount Charlotte mineralisation style which consists of sheeted quartz vein arrays with proximal ankerite-sericite±albite-pyrrhotite±gold alteration zones.

In all three mineralization styles, pyrite is in equilibrium with gold, therefore has been used as a proxy to record δ^{34} S, Δ^{33} S and Δ^{36} S isotopic evolution in the Golden Mile. In addition, multiple sulphur analyses were conducted on syngenetic pyrite of the Kapai Slate. For gold-pyrite, both the large range in δ^{34} S pyrite analyses (from -12.60 to +23.51 ‰) and the oxide-sulphidesulphate paragenesis suggests that both oxidizing (δ^{34} S < 0‰) and reducing ore forming conditions (δ^{34} S > 0‰) were prevalent. The negative δ^{34} S values that predominate in Fimiston style mineralization are compatible with dominant oxidized fluids during the ore-forming process, as evidenced by the presence of hematite-pyrite-magnetite-gold assemblage and fluid inclusion evidence for phase separation during D2 shear zone movement. Conversely, the positive δ^{34} S values that dominate in the Mount Charlotte and Oroya mineralization styles reflects the reduced oxidation state, as evidenced by the presence of pyrite-pyrrhotite-gold assemblages. The range of Δ^{33} S values (from -1.05 to +1.15 ‰) and the Δ^{33} S- Δ^{36} S array (r² ~0.4) suggest that various sulphur sources are involved in the formation of pyrite at the Golden Mile. Gold-related pyrites in the Fimiston, Mount Charlotte and Oroya Stage III mineralization styles yield values of Δ^{33} S close to the Mass Dependent Fractionation (MDF) field (Δ^{33} S ≈ 0 ‰) for a large range of δ^{34} S values. Conversely, the Δ^{33} S values in pyrite from the Kapai Slate and early, stages I and II in the Oroya style record Δ^{33} S values with recognisable Mass Independent Fractionation (MIF). Syngenetic pyrite from the Kapai Slate yield positive Δ^{33} S values (mean +1.76 ‰) likely related to photolytic reduction of SO₂ to S₈, whereas Stage I pyrite of the Oroya style yield negative Δ^{33} S values (mean -1.00 ‰) and Stage II pyrite display both positive and negative Δ^{33} S values (from -0.90 to +1.06 ‰, mean+0.4 ‰). Negative Δ^{33} S values are commonly interpreted as photochemically reduced sulphur deposited in a seawater environment. We propose that the Δ^{33} S-MIF values of pyrite in the Kapai Slate and stages I and II in the Oroya style mineralization reflect the atmospheric conditions during the deposition of sedimentary and volcanic rocks in the Golden Mile, whereas the gold related pyrite Δ^{33} S values inside the MDF field are compatible with a mantle source. The presence of a prominent lamprophyre dike in the Oroya Shoot, broadly synchronous with Oroya style mineralization 2,642±6 Ma, is also compatible with a mantle connection.